Electrochemical Behavior of Pt-modified Cobalt Oxide Electrodes in NaOH Solutions under Oxygen Atmosphere

Suguru WADA, Katsunori NISHIMURA, Kiyochika YAHIKOZAWA,
Michio ENYO, And Yoshio TAKASU*

Department of Fine Materials Engineering, Faculty of Textile

Science and Technology, 3-15-1 Tokida, Ueda 386

††Catalysis Research Center, Hokkaido University, Kita-ku, Sapporo 060

Pt-modified cobalt oxides (Pt + $\mathrm{Co_3O_4}$) were prepared from $\mathrm{H_2PtCl_6}$ and $\mathrm{Co(NO_3)_2}$ by pyrolysis. The deposited Pt species were in highly oxidized states. Glassy carbon-supported Pt + $\mathrm{Co_3O_4}$ electrodes of ca. 10 mol%-Pt exhibited the equilibrium oxygen electrode potential and electrocatalytic activity toward the $\mathrm{O_2}$ reduction in $\mathrm{O_2}$ -saturated 1 mol dm⁻³ NaOH solutions.

Kinetics of oxygen electrode reaction and design of highly active oxygen electrodes are important subjects in the development of fuel cells, oxygen sensors, water-based electrochemical energy conversion systems, and so on. Platinum electrodes reduce 0_2 to $\mathrm{H_2O_2}$ or to $\mathrm{H_2O}$, depending on the electrode potential, and the latter reaction takes place at rather low potentials. Recently, spinel-type metal oxides such as $\mathrm{Co_3O_4}$ were found to be promising electrocatalysts for the 0_2 cathodes. Since metal oxide such as $\mathrm{Co_3O_4}$ is active toward catalytic decomposition of $\mathrm{H_2O_2}$ to $\mathrm{H_2O}$, combination of Pt and $\mathrm{Co_3O_4}$ may be expected to enhance the complete reduction of $\mathrm{O_2}$ to $\mathrm{H_2O}$. We have investigated this synergistic effect for Pt + $\mathrm{Co_3O_4}$ binary electrocatalysts in NaOH solutions under $\mathrm{O_2}$ atmosphere.

 ${\rm Co}_3{\rm O}_4$ oxide was prepared by hydroxide precipitation from aqueous Co(II) salts. A solution containing 1.4 mol dm⁻³ of Co²⁺ ions was prepared from ${\rm Co}({\rm NO}_3)_2{\rm GH}_2{\rm O}$ (Wako Pure Chemicals Ind., 99.5% in purity) using deionized water, and after N₂ bubbling and cooling in an ice water bath, deoxygenated 5 mol dm⁻³ NaOH solution was added dropwise to obtain pink-colored precipi-

[†]Present address: Hitachi Research Laboratory, Hitachi Ltd., 4026 Kujicho, Hitachi 316-21.

tate of ${\rm Co(OH)}_2$. After adding 30 % ${\rm H_2O_2}$, the precipitate was separated from the solution by centrifuge, dried at 80 °C in an oven and heated at 600 °C in an electric furnace for 5 h. Both bulk and surface composition of this oxide was assigned to be ${\rm Co_3O_4}^6$ by XRD and XPS (Shimazu Corp., ESCA-750).

To prepare Pt-modified $\mathrm{Co_3O_4}$ (Pt + $\mathrm{Co_3O_4}$) electrodes, aqueous $\mathrm{H_2PtCl_6}$ solutions were added to a suspension of $\mathrm{Co_3O_4}$ at a required mole ratio. The mixtures then dried at 80°C and calcined at 300°C for 1 h to yield $\mathrm{Co_3O_4}$ + Pt composits. These oxides were suspended in deionized water,

painted on GC (glassy carbon) rods (Tokai Carbon Co. Ltd., GC-20S, 5 mm $^{\phi}$), dried at 80 $^{\circ}$ C and calcined at 300 $^{\circ}$ C for 1 h. Electrochemical experiments were carried out in a three-compartment cell.

Figure 1 shows cyclic voltammograms of GC-supported trodes of Co_3O_4 and Pt + Co_3O_4 in a N_2 - and an O_2 -saturated 1 mol dm^{-3} NaOH solutions (pH = 14), together with those of a smooth Pt electrode. In the case of the GC-supported Co₃O₄ electrode under N_2 atmosphere (dotted curve 1), oxidation and reduction current waves were seen potentials higher than 1.1 V (vs. RHE). At the lower potentials only double-layer a charging current was observed. the 0_2 -saturated solution (solid curve 1), reduction currents appeared at E < 0.8 V in the negative- and positive-They monotonously going sweeps. increased with a decrease of the electrode potential. In the N₂ saturated solution, the Pt + 11 mol%-Pt Co₃O₄ electrode of showed a similar feature in the

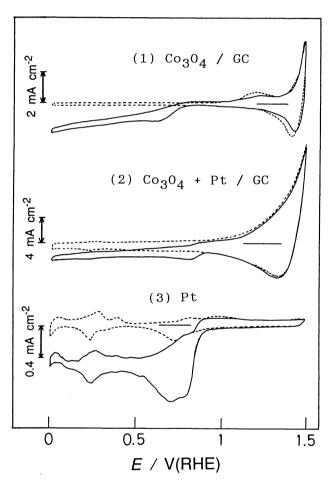


Fig.1. Cyclic voltammograms of glassy carbon-supported electrodes of (1) Co_3O_4 and (2) Pt + Co_3O_4 in 1 mol dm⁻³ NaOH, together with those of a smooth Pt electrode. (---); 1 atm N₂, (—-); 1 atm O₂. Sweep rate; 100 mV s⁻¹. Surface areas of the glassy carbon substrates (ca. 0.6 cm⁻²) were used as apparent surface areas of the electrodes of (1) and (2).

voltammogram (dotted curve 2) as the ${\rm Co_3O_4}$ electrode, but after introduction of ${\rm O_2}$ into the solution, ${\rm O_2}$ reduction took place at E < 0.9 V in both the negative- and positive-going sweeps. Thus, Pt modification enhanced the ${\rm O_2}$ reduction.

A typical cyclic voltammogram of a smooth Pt electrode in the 0_2 -free NaOH solution was shown as the dotted curve 3. In the 0_2 -saturated solution (solid curve 3), currents of 0_2 reduction appeared at potentials below 0.9 - 1 V. In the negative-going sweep the reduction current wave showed a complex structure. A peak around 0.8 V involves the reduction current of Pt oxide layer. In the hydrogen region, E < 0.4 V, the hydrogen wave was still observable.

Rest potentials of the Pt + ${\rm Co_3O_4}$ electrodes were measured in the ${\rm N_2}^-$ and ${\rm O_2}^-$ saturated 1 mol dm $^{-3}$ NaOH solutions. Under ${\rm N_2}$ atmosphere, ${\rm Co_3O_4}$ electrodes modified and unmodified with Pt showed rest potentials around

0.9 V. Similarly, the potential of the polycrystalline electrode was 0.9 - 1 V. Under 0_2 atmosphere the potentials of all the electrodes studied increased. As presented Fig.2, the highest potential was obtained at the + Co_3O_4 electrodes of ca. mol%-Pt. The value was 1.22 which is practically in agreement with the thermodynamic equipotential of $0_2 / H_2 0$ The (1.23 V vs. RHE). Pt + Co304 electrodes of other composition, as well as the pure Pt metal electrode (shown at right-hand side ordinate) significantly lower rest poten-The synergistic effect tials. $Pt + Co_3O_4$ observed for the composits is notable.

In the case of the Pt + $\rm Co_3O_4$ system, $\rm Co_3O_4$ particles may affect chemical states of the deposited Pt species. XPS spectra of Co2p and O1s of the

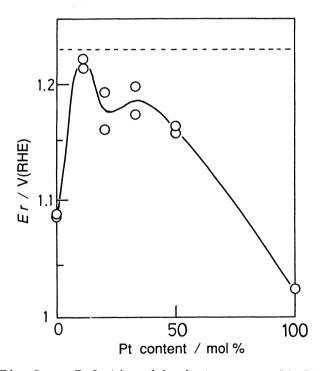


Fig.2. Relationship between mol%-Pt and the rest potential of glassy carbon-supported Pt + $\rm Co_3O_4$ electrodes obtained in 1 mol dm⁻³ NaOH under 1 atm $\rm O_2$ atmosphere. The result obtained on a smooth polycrystalline Pt electrode is given at the right-hand side ordinate. The broken line indicates the equilibrium potential of $\rm O_2$ / $\rm H_2O$ (1.23 V vs. RHE).

Pt-modified ${\rm Co_3O_4}$ (11 mol%-Pt) specimen, shown in Fig.3, exhibit similar spectroscopic features as those of the ${\rm Co_3O_4}$ specimen. Pt4f spectrum shows that $4{\rm f_{7/2}}$ and $4{\rm f_{5/2}}$ peaks are located at rather high energy positions, i.e., 75 and 77 eV as compared with those of Pt metal (70.7 and 74.0 eV, respectively $^{7)}$). This result suggests that Pt atoms or small cluster particles deposited on ${\rm Co_3O_4}$ oxide particles are at a highly oxidized state, Pt(IV).

The synergism in the Co_3O_4 elec-Pt-modified trodes (Fig. 2) may be attributed to; (1) Pt atoms particular chemical states which act as active sites for the 0_2 reaction, (2) Co_3O_4 particles enhance the decomposition of H_2O_2 produced at Pt sites.

The authors are grateful to Prof. Hidekazu Touhara of this Faculty for giving them a chance to use the XPS.

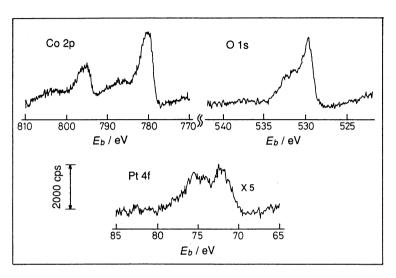


Fig.3. XPS spectra of Co2p, Pt4f and O1s of the glassy carbon-supported Pt + Co_3O_4 electrode (11 mol%-Pt).

References

- 1) J.R.Goldstein and A.C.C.Tseung, J.Electrochem.Soc., 76, 3646(1972).
- 2) M.R.Tarasevich and B.N.Efremov, "Electrodes of Conductive Metallic Oxides," ed by S.Trasatti, Elsevier, Amsterdam(1980), Part A, p.221.
- 3) C.Pirovano and S.Trasatti, J.Electroanal.Chem., $\underline{180}$, 171(1984).
- 4) S.P.Jiang, Z.G.Lin, and A.C.C.Tsueng, J.Electrochem.Soc., <u>137</u>, 759 (1990).
- 5) A.I.Onuchukwu and A.B.Zuru, Matr.Chem.Phys., <u>15</u>, 131(1986).
- 6) M.Oku and K.Hirokawa, J.Electr.Spectros.Related Phenom., $\underline{8}$, 475(1976).
- 7) K.S.Kim, N.Winograd, and R.E.Davis, J.Am.Chem.Soc., 93, 6296(1971).

(Received September 10, 1992)